

渡边 信一 Shinichi WATANABE

森下 亨 Toru MORISHITA

研究课题

原子•分子•光 (AMO) 相关的计算数理的解析 基于原子 BEC、阿托秒光脉冲的量子过程的 解析

关键词

量子系统的时间发展、BEC (玻色爱因斯坦凝聚)、 BEC 干扰计, 阿托秒光脉冲, 多电子激发状态与电子 之间的相关性, 超高速成像, Siegert 伪状态, 计算数 理科学,可视化技术,AMO

所属专业	大学研究生院信息理工学研究科 先进理工学专业
研究成员	渡边 信一 教授 森下 亨 副教授
所属学会	原子碰撞研究协会,日本物理学会,美国物理学会
研究设备	高速计算群(Opteron)12 波节,数字解析用高速计算服务器(Intel
	生产的 Xeon 等) 15 台,对应 64 位的大容量计算服务器 (Intel 生产
	的 Itanium 笙) 6 台

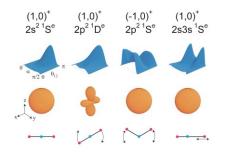
研究概要

用计算数理科学的方法来探明量子系统

该研究室从事原子•分子•光的理论研究。这种领域的物理学研究被称为 AMO(Atomic, Molecular, and Optical) 物理学。

原子•分子•电子等微观世界由量子力学所控制。这种量子力学与经典力学(牛顿力学)有很多不同之 处,比如不能同步、精确地确定粒子的位置与速度(不确定性原理)。

另外微观世界会产生很多现象,超越了我们在经典力学中的常识,是一个不可思议又充满趣味的 世界。由于研究这个世界需要活用非常先进的量子力学理论体系,所以用来记述自然的数学就如获重 生一样活跃起来, 也能让普通人感受到它的一些乐趣吧。


该研究室的每个研究课题简而言之,就是「希望探明在原子、分子不可思议的微观世界发生的物 理现象 |。实际上就是用分子模型来记述原子的多电子激发状态,以反质子氦离子为研究对象,开发超 球(椭圆)坐标法这种散射数值解法,将其应用到原子与分子的冲撞等现象中。最近在 AMO 领域将 该方法用到了引人注目的问题中。

BEC 现象的数理分析

该研究室的研究课题之一就是这几年来一直在研究的 BEC 现象的数理分析。所谓 BEC, 就是指 被称为玻色爱因斯坦凝聚的现象,是在非常低温的环境下产生的。根据量子力学,原子、分子具有粒 子与波动的二重性,在接近绝对 0 度的超低温环境下,就会失去粒子性而只呈现出波动性。因此原子 处于能量最低的状态(基底状态)下就会像波浪一样起伏。这时通过激光照射来观察原子产生的影子, 就能窥视到原子的量子力学世界。

到目前为止虽然很难制造出超低温的环境,但随着激光技术的快速进步,他们现在采用激光冷却、 蒸发冷却这种方法,制造出了 10-18 开氏度左右的低温环境,并对 BEC 现象进行了确认。

这项研究是非常新颖且目前最活跃的领域。他们使用上述的超球坐标法、非线性薛定谔方程式,

氦原子内的电子状态。通过可视化以达到多面理解的目标

对捕捉到的气体 BEC 的诸多特性进行数理分析,或 者调查、研究能否应用 BEC 来制作高辉度干扰计。 他们不仅以数字形式来表现宏观量子系统 BEC 难 以想象的特性,还开发可视化技术来实现近在眼前 的观察。

阿托利原子物理

接着他们使用阿托秒领域(1阿托秒=10-18秒 =100 京分之 1 秒)内时间宽度非常短的光脉冲来操 纵原子内的电子, 进行理论研究来监控、控制量子 状态。如果说阿托秒的光有多短,它是1秒内能绕 地球7周半的光只以原子左右的大小移动,是一种 极短的光。用这种很短的光像闪光灯一样照射原子, 计算由此产生的原子内部的电子运动, 研究如何用实 验来观测它。此外他们还使用高强度的红外激光脉冲, 积极研究阿托秒领域的超高速原子•分子成像。

优势

即使在目前的理论物理学中也是最热门的研究

之前介绍的BEC现象是1995年被确认的,2001 年成为诺贝尔物理学奖的颁奖对象。此外实现这种现 象的激光冷却技术于 1997 年获得了诺贝尔奖。该研 究室自 2000 年左右开始致力于 BEC 的研究, 正逐步 取得一定的成果。

阿托秒原子物理同样在以原子•分子•光为对象的 物理学中也是最尖端的研究课题,非常适合活用他们 迄今为止开发的技术来研究这个课题。

未来展望

将物理学的精彩、乐趣传达给下一代,这是与基础研究并重的使命

如前所述,该研究室是理论系统的研究室,直白地说他们的研究还是很缺乏能够立即产品化的要

但是任何科学技术正是因为有了基础理论的支撑才成立的, 如果能产生新的理论, 就有可能成为未来 的新技术。并且在理论研究、探明不了解的现象的过程中会产生了很多新的技术构思。

也就是说所谓基础理论,如同金字塔的塔尖,只要向上前进一点,其下面的基础就会更加广阔。 该研究室也和世界其他众多的研究人员一样,正在一点一点地向着这个金字塔的塔尖攀爬,所以每天 在积累研究的同时,也希望能够发现未来 AMO 物理学的指针,这是他们最期待的目标。

还有一件非常重要的任务就是教育。持续基础研究比什么都重要,基础研究如果一旦产生空白, 就很难返回到以前的水准。物理学是从人类经过 2000 多年持续积累的智慧、努力中产生的精华。通 过对物理学的教育,把接力棒传递给下一代人,这也是该研究室的重要使命。

基础研究是通过教育来继承的。今后该研究室希望把这两项做为他们的两大支柱。