野

庄野 逸 Hayaru SHOUNO

研究课题

使用贝叶斯推断进行图像修复与 CT 图像的 模式识别

关键词

X 射线,贝叶斯推断,CT 扫描,贝叶斯定理,图 像修复, 图像识别, 模式识别

所属专业

研究生院信息理工学研究科 综合信息学专业

研究成员 所属学会 庄野 逸 副教授

电子信息通信学会, 日本神经回路学会, 日本物理学会, 信息处理学

研究概要

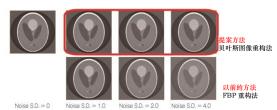
为解决有 CT 图像的两刀论法而进行相关的研究

近来为了检查身体的异常情况而使用了 CT (计算机断层扫描) 扫描仪。因此找出病灶的技术及预 防医学等得以迅速发展,并给医疗行业带来了巨大的变革。

但是 CT 扫描仪有一个缺点, 那就是它和伦琴射线一样都是使用 X 射线将身体的内部切成圆片, 拍出切片断层图像的一种装置,所以为了拍摄 CT 图像,人体就必须接受放射线的照射。也就是说为 了得到清晰的图像就要增加 X 射线的辐射强度,这样人体被辐射的程度就会加深,因此必须对辐射强 度进行一定程度的控制的同时, 又要尽可能拍出清晰的图像, 这就是目前面临的困境。

基于贝叶斯推断的概率论方法的图像修复技术

该研究室使用数理方法的图像修复技术来研究如何解除这种困境。(现有的 X 射线 CT 是根据投 影数据将分布(结构)再重构成图像,采用拉东变换来生成图像)。那时使用他们研究的图像修复方 法来增加实物图像感的要素,得到了更加真实的图像。所谓图像修复,就是用概率模式来表现实物具 有的图像感,他们使用贝叶斯推断的概率论方法来实现这种图像修复。


具体来说图像修复的前提是图像中相邻像素相似,利用贝叶斯推断来获取与观测数据的平衡点。 使用这种方法就能制作出大概准确的图像。但是需要正确设定观测到的数据与图像感之间的平衡,所 以要采用数理式的平衡调整法。

在实际的实验中,使用 X 射线实验用的人工模式来模拟重构观测到的图像,不断增加干扰来观察 到达什么程度,图像会变得难以辨识。采用以前的方法,一旦增加干扰就会产生不光滑的感觉,就很 难识别图像。

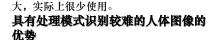
该研究室使用贝叶斯推断的确立方法,通过混合真正的图像感的要素,增加干扰,画质虽然会变 差,但是在图像识别上与以前的方法相比,取得了相当不错的研究成果。

研究人体的图像识别来发现较难治疗的肺病

除了图像修复之外,该研究室还研究 图像识别。这是根据用CT扫描到的图像, 系统地找出病症的地方。他们的目标就是 弥漫性肺病这种较难治疗的病症。这种病 症不能系统地分类为肺炎、肺癌这种病, 重要的是不要让它的病变区扩大。医生认 为早期发现病变区非常重要, 所以需要从 拍摄积累的CT图像中找到病灶并进行病 变诊断。因此要使用模式识别从 CT 图像 中推导出弥漫性肺病的种类。

贝叶斯图像重构法与旧方法的比较。贝叶斯图像重构法能够接近原图像

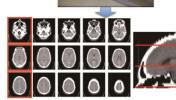
具体来讲就是给合模式识别器,从CT 图像中提取相关的特征。识别器使用了组合 概率法的方法。通常情况下可以根据人的视 觉制作特征量来进行识别, 但这种情况下, 由于是平时没看习惯的模式,所以要用其它 的方法计算出特征量。

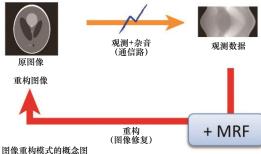

体的图像识别并不简单。有可能出现如 果是二维图像,则作为单纯的圆形来处理, 用三维图来看,实际上就是血管这种情况。 像这样对人体的图像进行三维识别才是正确的。通过 导入该研究室开发的特殊的模式识别,目前已经能够 分析约80%~90%的图像。

优势

该算法能够避免贝叶斯推断的大量计算

首先该研究室自负在贝叶斯推断方面具有很大 的优势。他们使用的方法是在相邻像素相似这种条件 下插入图像,避免庞大的数据处理,推导出最终的结 果。在这点上可以说是领先于其他研究室吧。


贝叶斯推断是必须要进行大量计算的定理,比如 在处理 16×16 (=256) 像素的黑白图像这种小图 像时,在考虑所有可获得的图像时,就必须考虑2× 256 的 256 乘方这种情况。因此以前虽然知道贝叶 斯推断的优点, 但由于它的计算量非常庞


此外处理非普通图像可以说也是该研 究室的一大优势。进行人体的模式识别是 非常困难的,即使是二维图像,也必须始 终要把它识别成立体的。这并非一朝一夕 就能确立。今后会活用这些经验, 还希望 将其应用到 3D 识别技术、3D 重构, 再进 一步到增加了时间要素的 4D 领域中。

気管支

X射线 CT 摄影装置和重构画面

未来展望

计划从事辅助机械诊断的研究, 减轻医生的负担

该研究室的研究如果能够帮助医生就好了。他们设置了补充性意见制度,一个医生就能诊疗更多 的患者。再者放射线摄像设备的发展非常迅速,最近对1个患者用1次扫描就能获得500张以上的图 像信息,要从这些图像中找出病症则非常费事。这只能增加医生的负担。因此采用该研究室研究的机 械诊断辅助就能提供以前仅靠医生经验才能得到技术、诀窍,这样就能减少医生的负担了吧。

希望拍摄活动的人体图像

进而还有想拍摄心脏活动等有生命的器官。但是用现行的设备,放射线过强,是不可用于人体。 因此使用该研究室的定理,是不是利用起来是不是就可以减少被辐射的量了吧?这样希望将他们的研 究应用到各种领域。